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Notation
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ϕ (t)m(t)

Oscillator

c(t) = A cos(ωct +  θο)

Modulator

Modulating signal Modulated signal

Carrier signal
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Three Modulation Types

• A ∝m(t); ωc = constant; θo = constant
– Amplitude Modulation (AM)

– Amplitude Shift Keying (ASK)

• A = constant; ωc ∝m(t); θo = constant
– Frequency Modulation (FM)

– Frequency Shift Keying (FSK)

• A = constant; ωc = constant; θo ∝m(t)
– Phase Modulation (PM)

– Phase Shift Keying (PSK)
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Double Sideband Suppressed 
Carrier (DSB-SC) Modulator
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Output  
ϕDSB-SC(t)

m(t)

Mixer

Channel

Oscillator

c(t) = cos(ωct)

Modulator
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DSB-SC Demodulator
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ϕDSB-SC(t)

Mixer

LPF
H(ω)

Channel
x(t)

c(t) = cos(ωct)

Demodulator

Output
y(t) =  ½ m(t)

Bandwidth = B Hz
Gain = 1 
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Final step: LPF

Smoothed Output

0 V

x(t)

t
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QAM (Quadrature Amplitude Modulation)

������� = 	1��� cos����� + 	2��� sin����� 
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ϕQAM(t)

m1(t)

Channelcos(ωct)

sin(ωct)

−π/2

Σ

m2(t)
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QAM Transmitter and Receiver
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½ m1(t)

½ m2(t)

ϕQAM(t)
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Transmitter Receiver

Bandwidth = B Hz
Gain = 1
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SSB-SC (USB) Modulation
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m(t)

ϕSSB-SC(t)
(USB)

Channel

cos(ωct)

BPF

Center freq. = ωc + 2πB/2

Bandwidth = 2πB rad/s
Gain = 1

m(t) cos(ωct)

Channel Output
y(t) =  ¼ m(t)

ϕ(t)
LPF

x(t)

Bandwidth = B Hz
Gain = 1

cos(ωct)
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VSB-SC (USB) Transmitter
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m(t)

ϕVSB-SC(t)
(USB)

Channel

cos(ωct)

Hv(ω)
m(t) cos(ωct)

Vestigial BPF
(odd symmetry around ωc)
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VSB-SC (USB) Receiver
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Channel Output
y(t) =  ¼ m(t)

ϕ(t)
LPF

x(t)

cos(ωct)

Bandwidth = B Hz
Gain = 1
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VSB-SC (LSB), VSB+C (USB), VSB+C (LSB)
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Synchronizing Oscillator at the RX
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y(t)=?ϕ(t)
LPF

ϕ(t)m(t)

cos(ωct) cos(ωct + ∆θ )

TX RX

y(t)=?ϕ(t)
LPF

ϕ(t)m(t)

cos(ωct) cos([ωc + ∆ω]t)

Problem

Local Oscillator 
Phase Error

Local Oscillator 
Frequency Error

x(t)

x(t)
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Frequency Error at the Receiver 

22
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To avoid problems due to 
phase and frequency errors

• Solution #1: Use a PLL (Phase-Locked Loop) at the 
RX. A PLL can, by observing � � , recover the 
exact frequency and phase of the carrier at the TX, 
and hence use these values at the RX. The PLL is 
called a carrier-recovery circuit (complex and 
expensive). The receiver in this case is known as a 
synchronous or coherent receiver.

• Solution #2: Do not generate a carrier at the RX. 
Rather, let the TX send an extra copy of the carrier 
(e.g., DSB-LC) to help the RX demodulate � � . 
The RX is known as asynchronous or incoherent
receiver (cheaper), but the TX is power inefficient.
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Amplitude Modulation (Double 
Sideband Large Carrier, DSB-LC or AM)

• Three possibilities (based on the value of A):

– Under modulation; m < 1

– Critical modulation; m = 1

– Over modulation; m > 1

24
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<< Under modulation
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AM Modulator (Method #2)

• Three possibilities (based on the value of A):

– Under modulation; m < 1

– Critical modulation; m = 1

– Over modulation; m > 1
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<< Under modulation
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<< Over modulation
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<< Critical modulation
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AM Modulation Index, m
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m > 1

m = 1

m < 1

m = ∞ 

Only synchronous 
(coherent) receivers 

can demodulate. Such 
RX requires using a 

PLL (Expensive)

Asynchronous 
(incoherent) receivers 

can demodulate 
(Very simple and 
very inexpensive)

More power needed 
from transmitter 

(Larger A)
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Digital Modulation

• Four main modulation techniques:
– Amplitude-Shift Keying (ASK). 

– Frequency-Shift Keying (FSK).

– Phase-Shift Keying (PSK).

– Quadrature Amplitude Modulation (QAM).

• PSK and QAM are the most popular 
nowadays because of their smaller
bandwidths.

• PSK and QAM require synchronous 
detection, which is easier nowadays (PLLs).
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Analog vs. Digital Modulation

• m(t) is Polar NRZ + AM = ASK

• m(t) is Polar NRZ + FM = FSK

• m(t) is Polar NRZ + PM = BPSK

• m(t) is Q-ary NRZ + PM = QPSK

• m(t) is M-ary NRZ + PM = M-PSK

• m(t) is M-ary NRZ + QAM = QAM

• m(t) is M-ary NRZ + AM = M-ASK

36
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ASK and OOK
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ASK is AM
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PSD of an ASK Signal

39

Copyright © Prof. Mohammed Hawa Electrical Engineering Department, The University of Jordan

Unipolar NRZ and Unipolar RZ
Uses a positive rectangular pulse p(t) to represent binary 1, and 
the absence of a pulse (i.e., zero voltage) to represent a binary 0.

 
Unipolar NRZ Code 

 

 
Unipolar RZ Code 
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Unipolar PSD
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Polar NRZ and Polar RZ
Binary 1’s are represented by a pulse p(t) and binary 0’s 
are represented by the negative of this pulse -p(t).
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Polar PSD
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QAM: Analog
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QAM: Digital
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Many QAM Constellations
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